Dataiku Documentation
  • Academy
    • Join the Academy
      Benefit from guided learning opportunities →
      • Quick Starts
      • Learning Paths
      • Certifications
      • Academy Discussions
  • Community
      • Explore the Community
        Discover, share, and contribute →
      • Learn About Us
      • Ask A Question
      • What's New?
      • Discuss Dataiku
      • Using Dataiku
      • Setup And Configuration
      • General Discussion
      • Plugins & Extending Dataiku
      • Product Ideas
      • Programs
      • Frontrunner Awards
      • Dataiku Neurons
      • Community Resources
      • Community Feedback
      • User Research
  • Documentation
    • Reference Documentation
      Comprehensive specifications of Dataiku →
      • User's Guide
      • Specific Data Processing
      • Automation & Deployment
      • APIs
      • Installation & Administration
      • Other Topics
  • Knowledge
    • Knowledge Base
      Articles and tutorials on Dataiku features →
      • User Guide
      • Admin Guide
      • Dataiku Solutions
      • Dataiku Cloud
  • Developer
    • Developer Guide
      Tutorials and articles for developers and coder users →
      • Getting Started
      • Concepts and Examples
      • Tutorials
      • API Reference
  • User's Guide
  • DSS concepts
  • Connecting to data
  • Exploring data
  • The Flow
  • Data preparation
  • Visual recipes
  • Code recipes
  • Generative AI and LLM Mesh
  • AI Agents
    • Introduction to Agents in Dataiku
    • Simple Visual Agents
    • Code Agents
    • External Agents
    • Structured Visual Agents
      • Overview and example use cases
      • Key concepts
      • Blocks
      • Expressions and templates
      • How to …
    • Managed tools
    • Agent Hub
    • Tracing
    • Agent Evaluation
    • Additional Request Context
    • Slack Integration
  • Semantic Models
  • AI Assistants
  • Charts
  • Schemas, storage types and meanings
  • Machine learning
  • MLOps
  • Interactive statistics
  • Code notebooks
  • Code Studios
  • Webapps
  • Collaboration
  • Dashboards
  • Workspaces
  • Stories
  • Data Catalog
  • Data Lineage
  • Dataiku Applications
  • Working with partitions
  • DSS and SQL
  • DSS and Python
  • DSS and R
  • DSS and Spark
  • Code environments
  • Specific Data Processing
  • Time Series
  • Geographic data
  • Graph
  • Text & Natural Language Processing
  • Images
  • Audio
  • Video
  • Automation & Deployment
  • Metrics, checks and Data Quality
  • Automation scenarios
  • Production deployments and bundles
  • API Node & API Deployer: Real-time APIs
  • AI Governance
  • Business Applications
  • Manufacturing Operations
  • APIs
  • Python APIs
  • R API
  • Public REST API
  • Additional APIs
  • Installation & Administration
  • Installing and setting up
  • Elastic AI computation
  • DSS in the cloud
  • DSS and Hadoop
  • Metastore catalog
  • Operating DSS
  • Security
  • User Isolation
  • Other topics
  • Plugins
  • Enterprise Asset Library
  • Streaming data
  • Formula language
  • Custom variables expansion
  • Sampling methods
  • Visualization themes
  • Accessibility
  • Troubleshooting
  • Release notes
  • Other Documentation
  • Third-party acknowledgements
Dataiku DSS
You are viewing the documentation for version 14 of DSS.
  • »
  • AI Agents »
  • Structured Visual Agents Open page in a new tab

Structured Visual Agents¶

Structured Visual Agents are an advanced type of visual agent, comprising a graph of blocks.

Structured Visual Agents can implement visually very advanced agentic logic, in a fully transparent and controllable manner, with a controllable amount of determinism.

Before using Structured Visual Agents, we recommend that you get familiar with Simple Visual Agents first.

  • Overview and example use cases
    • Predefined sequence of steps and branches
    • Gathering “mandatory” information at the beginning of the conversation
  • Key concepts
    • Blocks
    • State and Scratchpad
    • Expressions and templating
    • Starting block and next turn behavior
    • Pre-turn and post-turn blocks
  • Blocks
    • Core Loop
      • Exit Conditions
        • Example use case
      • State and scratchpad virtual tools
      • Forcing tool call arguments
      • Using Agents as tools
      • History passing
    • Routing
    • Manual and Mandatory Tool Call
    • Parallel
      • Output
      • Cautions
    • For Each
      • Example use case
      • Output
      • Cautions
    • Set State and Scratchpad entries
    • Emit Output
    • Long-Term Memory
      • Setup
      • Types of memory items
      • Memory banks
    • Semantic Feedback Management
      • Setup
      • Usage
  • Expressions and templates
    • CEL expressions
    • CEL templates
    • Jinja
  • How to …
    • Conversational Disambiguation: Force an agent to uniquely identify the subject of discussion before moving on
Next Previous

© Copyright 2025, Dataiku

Built with Sphinx using a theme provided by Read the Docs.