Dataiku Documentation
  • Academy
    • Join the Academy
      Benefit from guided learning opportunities →
      • Quick Starts
      • Learning Paths
      • New Features
      • Certifications
      • Academy Discussions
  • Community
      • Explore the Community
        Discover, share, and contribute →
      • Learn About Us
      • Ask A Question
      • What's New?
      • Discuss Dataiku
      • Using Dataiku
      • Setup And Configuration
      • General Discussion
      • Plugins & Extending Dataiku
      • Product Ideas
      • Programs
      • Frontrunner Awards
      • Dataiku Neurons
      • Community Resources
      • Community Feedback
      • User Research
  • Documentation
    • Reference Documentation
      Comprehensive specifications of Dataiku →
      • User's Guide
      • Specific Data Processing
      • Automation & Deployment
      • APIs
      • Installation & Administration
      • Other Topics
  • Knowledge
    • Knowledge Base
      Articles and tutorials on Dataiku features →
      • User Guide
      • Admin Guide
      • Dataiku Solutions
      • Dataiku Cloud
  • Developer
    • Developer Guide
      Tutorials and articles for developers and coder users →
      • Getting Started
      • Concepts and Examples
      • Tutorials
      • API Reference
  • User's Guide
  • DSS concepts
  • Connecting to data
  • Exploring data
  • Charts
  • The Flow
  • Data preparation
  • Visual recipes
  • Code recipes
  • Schemas, storage types and meanings
  • Generative AI and LLM Mesh
  • Machine learning
  • MLOps
  • Interactive statistics
  • Code notebooks
  • Code Studios
  • Webapps
  • Collaboration
  • AI Assistants
  • Dashboards
  • Workspaces
  • Stories
  • Data Catalog
  • Dataiku Applications
  • Working with partitions
  • DSS and SQL
  • DSS and Python
  • DSS and R
  • DSS and Spark
  • Code environments
  • Specific Data Processing
  • Time Series
  • Geographic data
  • Text & Natural Language Processing
  • Images
  • Audio
  • Video
  • Automation & Deployment
  • Metrics, checks and Data Quality
  • Automation scenarios
  • Production deployments and bundles
  • API Node & API Deployer: Real-time APIs
    • Introduction
    • Concepts
    • Installing API nodes
    • Setting up the API Deployer and deployment infrastructures
    • First API (with API Deployer)
    • First API (without API Deployer)
    • Deploying to an external platform
    • Types of Endpoints
      • Exposing a Visual Model
      • Exposing a Python prediction model
      • Exposing a R prediction model
      • Exposing a MLflow model
      • Exposing a Python function
      • Exposing a R function
      • Exposing a SQL query
      • Exposing a lookup in a dataset
    • Enriching prediction queries
    • Documenting your API endpoints
    • Security
    • Managing versions of your endpoint
    • Deploying on Kubernetes
    • APINode APIs reference
    • Operations reference
  • Governance
  • APIs
  • Python APIs
  • R API
  • Public REST API
  • Additional APIs
  • Installation & Administration
  • Installing and setting up
  • Elastic AI computation
  • DSS in the cloud
  • DSS and Hadoop
  • Metastore catalog
  • Operating DSS
  • Security
  • User Isolation
  • Email Notifications
  • Other topics
  • Plugins
  • Streaming data
  • Formula language
  • Custom variables expansion
  • Sampling methods
  • Accessibility
  • Troubleshooting
  • Release notes
  • Other Documentation
  • Third-party acknowledgements
Dataiku DSS
You are viewing the documentation for version 13 of DSS.
  • »
  • API Node & API Deployer: Real-time APIs »
  • Types of Endpoints Open page in a new tab

Types of Endpoints¶

The API node supports several kinds of endpoints.

  • Exposing a Visual Model
  • Exposing a Python prediction model
  • Exposing a R prediction model
  • Exposing a MLflow model
  • Exposing a Python function
  • Exposing a R function
  • Exposing a SQL query
  • Exposing a lookup in a dataset
Next Previous

© Copyright 2025, Dataiku

Built with Sphinx using a theme provided by Read the Docs.