Dataiku Documentation
  • Academy
    • Join the Academy
      Benefit from guided learning opportunities →
      • Quick Starts
      • Learning Paths
      • New Features
      • Certifications
      • Academy Discussions
  • Community
      • Explore the Community
        Discover, share, and contribute →
      • Learn About Us
      • Ask A Question
      • What's New?
      • Discuss Dataiku
      • Using Dataiku
      • Setup And Configuration
      • General Discussion
      • Plugins & Extending Dataiku
      • Product Ideas
      • Programs
      • Frontrunner Awards
      • Dataiku Neurons
      • Community Resources
      • Community Feedback
      • User Research

      Discover the winners and finalists of the 2023 edition, and read their story to learn about their pioneering achievements in data science and AI!

      View Winners and Finalists

  • Documentation
    • Reference Documentation
      Comprehensive specifications of Dataiku →
      • User's Guide
      • Specific Data Processing
      • Automation & Deployment
      • APIs
      • Installation & Administration
      • Other Topics
  • Knowledge
    • Knowledge Base
      Articles and tutorials on Dataiku features →
      • User Guide
      • Admin Guide
      • Dataiku Solutions
      • Dataiku Cloud
  • Developer
    • Developer Guide
      Tutorials and articles for developers and coder users →
      • Getting Started
      • Concepts and Examples
      • Tutorials
      • API Reference
  • User's Guide
  • DSS concepts
  • Connecting to data
  • Exploring your data
  • Schemas, storage types and meanings
  • Data preparation
  • Charts
  • Interactive statistics
  • Machine learning
  • The Flow
  • Visual recipes
  • Recipes based on code
  • Code notebooks
  • MLOps
  • Webapps
  • Code Studios
  • Code reports
  • Dashboards
  • Workspaces
  • Data Catalog
  • Dataiku Applications
  • Working with partitions
  • DSS and SQL
  • DSS and Python
  • DSS and R
  • DSS and Spark
  • Code environments
  • Collaboration
  • Specific Data Processing
  • Time Series
  • Geographic data
  • Generative AI and LLM Mesh
  • Text & Natural Language Processing
  • Images
  • Audio
  • Video
  • Automation & Deployment
  • Metrics, checks and Data Quality
  • Automation scenarios
  • Production deployments and bundles
  • API Node & API Deployer: Real-time APIs
  • Governance
  • APIs
  • Python APIs
  • R API
  • Public REST API
  • Additional APIs
  • Installation & Administration
  • Installing and setting up
  • Elastic AI computation
  • DSS in the cloud
  • DSS and Hadoop
  • Metastore catalog
  • Operating DSS
  • Security
  • User Isolation
  • Other topics
  • Plugins
  • Streaming data
  • Formula language
  • Custom variables expansion
  • Sampling methods
  • Accessibility
  • Troubleshooting
    • Diagnosing and debugging issues
    • Obtaining support
    • Support tiers
    • Common issues
    • Error codes
      • ERR_ACTIVITY_DIRECTORY_SIZE_LIMIT_REACHED: Job activity directory size limit reached
      • ERR_BUNDLE_ACTIVATE_BAD_CONNECTION_PERMISSIONS: Connection is not freely usable
      • ERR_BUNDLE_ACTIVATE_BAD_CONNECTION_TYPE: Connection is the wrong type
      • ERR_BUNDLE_ACTIVATE_CONNECTION_NOT_WRITABLE: Connection is not writable
      • ERR_BUNDLE_ACTIVATE_MISSING_CONNECTION: Connection is missing
      • ERR_CLUSTERS_INVALID_SELECTED: Selected cluster does not exist
      • ERR_CODEENV_CONTAINER_IMAGE_FAILED: Could not build container image for this code environment
      • ERR_CODEENV_CONTAINER_IMAGE_TAG_NOT_FOUND: Container image tag not found for this Code environment
      • ERR_CODEENV_CREATION_FAILED: Could not create this code environment
      • ERR_CODEENV_DELETION_FAILED: Could not delete this code environment
      • ERR_CODEENV_EXISTING_ENV: Code environment already exists
      • ERR_CODEENV_INCORRECT_ENV_TYPE: Wrong type of Code environment
      • ERR_CODEENV_INVALID_CODE_ENV_ARCHIVE: Invalid code environment archive
      • ERR_CODEENV_JUPYTER_SUPPORT_INSTALL_FAILED: Could not install Jupyter support in this code environment
      • ERR_CODEENV_JUPYTER_SUPPORT_REMOVAL_FAILED: Could not remove Jupyter support from this code environment
      • ERR_CODEENV_MISSING_DEEPHUB_ENV: Code environment for deep learning does not exist
      • ERR_CODEENV_MISSING_ENV: Code environment does not exists
      • ERR_CODEENV_MISSING_ENV_VERSION: Code environment version does not exists
      • ERR_CODEENV_NO_CREATION_PERMISSION: User not allowed to create Code environments
      • ERR_CODEENV_NO_USAGE_PERMISSION: User not allowed to use this Code environment
      • ERR_CODEENV_NOT_USING_LATEST_DEEPHUB_ENV: Not using latest version of code environment for deep learning
      • ERR_CODEENV_UNSUPPORTED_OPERATION_FOR_ENV_TYPE: Operation not supported for this type of Code environment
      • ERR_CODEENV_UPDATE_FAILED: Could not update this code environment
      • ERR_CONNECTION_ALATION_REGISTRATION_FAILED: Failed to register Alation integration
      • ERR_CONNECTION_API_BAD_CONFIG: Bad configuration for connection
      • ERR_CONNECTION_AZURE_INVALID_CONFIG: Invalid Azure connection configuration
      • ERR_CONNECTION_DUMP_FAILED: Failed to dump connection tables
      • ERR_CONNECTION_INVALID_CONFIG: Invalid connection configuration
      • ERR_CONNECTION_LIST_HIVE_FAILED: Failed to list indexable Hive connections
      • ERR_CONNECTION_S3_INVALID_CONFIG: Invalid S3 connection configuration
      • ERR_CONNECTION_SQL_INVALID_CONFIG: Invalid SQL connection configuration
      • ERR_CONNECTION_SSH_INVALID_CONFIG: Invalid SSH connection configuration
      • ERR_CONTAINER_CONF_NO_USAGE_PERMISSION: User not allowed to use this containerized execution configuration
      • ERR_CONTAINER_CONF_NOT_FOUND: The selected container configuration was not found
      • ERR_CONTAINER_IMAGE_PUSH_FAILED: Container image push failed
      • ERR_DASHBOARD_EXPORT_SAND_BOXING_ERROR: Chrome cannot start in the “sandbox” mode
      • ERR_DATASET_ACTION_NOT_SUPPORTED: Action not supported for this kind of dataset
      • ERR_DATASET_CSV_ROW_TOO_LARGE: Error in CSV file: Dataset row is too long to be processed
      • ERR_DATASET_CSV_UNTERMINATED_QUOTE: Error in CSV file: Unterminated quote
      • ERR_DATASET_HIVE_INCOMPATIBLE_SCHEMA: Dataset schema not compatible with Hive
      • ERR_DATASET_INVALID_CONFIG: Invalid dataset configuration
      • ERR_DATASET_INVALID_FORMAT_CONFIG: Invalid format configuration for this dataset
      • ERR_DATASET_INVALID_METRIC_IDENTIFIER: Invalid metric identifier
      • ERR_DATASET_INVALID_PARTITIONING_CONFIG: Invalid dataset partitioning configuration
      • ERR_DATASET_PARTITION_EMPTY: Input partition is empty
      • ERR_DATASET_TRUNCATED_COMPRESSED_DATA: Error in compressed file: Unexpected end of file
      • ERR_ENDPOINT_INVALID_CONFIG: Invalid configuration for API Endpoint
      • ERR_EXPORT_OUTPUT_TOO_LARGE: Export file size limit reached
      • ERR_FOLDER_INVALID_CONFIG: Invalid managed folder configuration
      • ERR_FOLDER_INVALID_PARTITIONING_CONFIG: Invalid folder partitioning configuration
      • ERR_FORMAT_BOUNDING_BOXES: Invalid format of column representing bounding boxes
      • ERR_FORMAT_LINE_TOO_LARGE: Line is too long to be processed
      • ERR_FORMAT_TYPE_MISSING: Dataset is missing a format type
      • ERR_FSPROVIDER_CANNOT_CREATE_FOLDER_ON_DIRECTORY_UNAWARE_FS: Cannot create a folder on this type of file system
      • ERR_FSPROVIDER_DEST_PATH_ALREADY_EXISTS: Destination path already exists
      • ERR_FSPROVIDER_FSLIKE_REACH_OUT_OF_ROOT: Illegal attempt to access data out of connection root path
      • ERR_FSPROVIDER_HTTP_CONNECTION_FAILED: HTTP connection failed
      • ERR_FSPROVIDER_HTTP_INVALID_URI: Invalid HTTP URI
      • ERR_FSPROVIDER_HTTP_REQUEST_FAILED: HTTP request failed
      • ERR_FSPROVIDER_ILLEGAL_PATH: Illegal path for that file system
      • ERR_FSPROVIDER_INVALID_CONFIG: Invalid configuration
      • ERR_FSPROVIDER_INVALID_FILE_NAME: Invalid file name
      • ERR_FSPROVIDER_LOCAL_LIST_FAILED: Could not list local directory
      • ERR_FSPROVIDER_PATH_DOES_NOT_EXIST: Path in dataset or folder does not exist
      • ERR_FSPROVIDER_ROOT_PATH_DOES_NOT_EXIST: Root path of the dataset or folder does not exist
      • ERR_FSPROVIDER_SSH_CONNECTION_FAILED: Failed to establish SSH connection
      • ERR_FSPROVIDER_TOO_MANY_FILES: Attempted to enumerate too many files
      • ERR_HIVE_HS2_CONNECTION_FAILED: Failed to establish HiveServer2 connection
      • ERR_HIVE_LEGACY_UNION_SUPPORT: Your current Hive version doesn’t support UNION clause but only supports UNION ALL, which does not remove duplicates
      • ERR_LICENSING_TRIAL_INTERNAL_ERROR: Internal error trying to get a trial token
      • ERR_LICENSING_TRIAL_STATUS_ERROR: Internal error trying to get a trial status
      • ERR_METRIC_DATASET_COMPUTATION_FAILED: Metrics computation completely failed
      • ERR_METRIC_ENGINE_RUN_FAILED: One of the metrics engine failed to run
      • ERR_MISC_DISK_FULL: Disk is almost full
      • ERR_MISC_EIDB: Missing, locked, unreachable or corrupted internal database
      • ERR_MISC_ENOSPC: Out of disk space
      • ERR_MISC_EOPENF: Too many open files
      • ERR_ML_MODEL_DETAILS_OVERFLOW: Model details exceed size limit
      • ERR_ML_VERTICA_NOT_SUPPORTED: Vertica ML backend is no longer supported
      • ERR_NOT_USABLE_FOR_USER: You may not use this connection
      • ERR_OBJECT_OPERATION_NOT_AVAILABLE_FOR_TYPE: Operation not supported for this kind of object
      • ERR_PLUGIN_CANNOT_LOAD: Plugin cannot be loaded
      • ERR_PLUGIN_COMPONENT_NOT_INSTALLED: Plugin component not installed or removed
      • ERR_PLUGIN_DEV_INVALID_COMPONENT_PARAMETER: Invalid parameter for plugin component creation
      • ERR_PLUGIN_DEV_INVALID_DEFINITION: The descriptor of the plugin is invalid
      • ERR_PLUGIN_MISSING_IN_CONTAINER_IMAGE: Plugin is missing in container image
      • ERR_PLUGIN_INVALID_DEFINITION: The plugin’s definition is invalid
      • ERR_PLUGIN_NOT_INSTALLED: Plugin not installed or removed
      • ERR_PLUGIN_WITHOUT_CODEENV: The plugin has no code env specification
      • ERR_PLUGIN_WRONG_TYPE: Unexpected type of plugin
      • ERR_PROJECT_INVALID_ARCHIVE: Invalid project archive
      • ERR_PROJECT_INVALID_PROJECT_KEY: Invalid project key
      • ERR_PROJECT_UNKNOWN_PROJECT_KEY: Unknown project key
      • ERR_RECIPE_CANNOT_CHANGE_ENGINE: Cannot change engine
      • ERR_RECIPE_CANNOT_CHECK_SCHEMA_CONSISTENCY: Cannot check schema consistency
      • ERR_RECIPE_CANNOT_CHECK_SCHEMA_CONSISTENCY_EXPENSIVE: Cannot check schema consistency: expensive checks disabled
      • ERR_RECIPE_CANNOT_CHECK_SCHEMA_CONSISTENCY_NEEDS_BUILD: Cannot compute output schema with an empty input dataset. Build the input dataset first.
      • ERR_RECIPE_CANNOT_CHECK_SCHEMA_CONSISTENCY_ON_RECIPE_TYPE: Cannot check schema consistency on this kind of recipe
      • ERR_RECIPE_CANNOT_CHECK_SCHEMA_CONSISTENCY_WITH_RECIPE_CONFIG: Cannot check schema consistency because of recipe configuration
      • ERR_RECIPE_CANNOT_CHANGE_ENGINE: Not compatible with Spark
      • ERR_RECIPE_CANNOT_USE_ENGINE: Cannot use the selected engine for this recipe
      • ERR_RECIPE_ENGINE_NOT_DWH: Error in recipe engine: SQLServer is not Data Warehouse edition
      • ERR_RECIPE_INCONSISTENT_I_O: Inconsistent recipe input or output
      • ERR_RECIPE_SYNC_AWS_DIFFERENT_REGIONS: Error in recipe engine: Redshift and S3 are in different AWS regions
      • ERR_RECIPE_PDEP_UPDATE_REQUIRED: Partition dependency update required
      • ERR_RECIPE_SPLIT_INVALID_COMPUTED_COLUMNS: Invalid computed column
      • ERR_SCENARIO_INVALID_STEP_CONFIG: Invalid scenario step configuration
      • ERR_SECURITY_CRUD_INVALID_SETTINGS: The user attributes submitted for a change are invalid
      • ERR_SECURITY_GROUP_EXISTS: The new requested group already exists
      • ERR_SECURITY_INVALID_NEW_PASSWORD: The new password is invalid
      • ERR_SECURITY_INVALID_PASSWORD: The password hash from the database is invalid
      • ERR_SECURITY_DECRYPTION_FAILED: Decryption failed due to invalid HMAC
      • ERR_SECURITY_MUS_USER_UNMATCHED: The DSS user is not configured to be matched onto a system user
      • ERR_SECURITY_PATH_ESCAPE: The requested file is not within any allowed directory
      • ERR_SECURITY_USER_EXISTS: The requested user for creation already exists
      • ERR_SECURITY_WRONG_PASSWORD: The old password provided for password change is invalid
      • ERR_SPARK_FAILED_DRIVER_OOM: Spark failure: out of memory in driver
      • ERR_SPARK_FAILED_TASK_OOM: Spark failure: out of memory in task
      • ERR_SPARK_FAILED_YARN_KILLED_MEMORY: Spark failure: killed by YARN (excessive memory usage)
      • ERR_SPARK_PYSPARK_CODE_FAILED_UNSPECIFIED: Pyspark code failed
      • ERR_SPARK_SQL_LEGACY_UNION_SUPPORT: Your current Spark version doesn’t support UNION clause but only supports UNION ALL, which does not remove duplicates
      • ERR_SQL_CANNOT_LOAD_DRIVER: Failed to load database driver
      • ERR_SQL_DB_UNREACHABLE: Failed to reach database
      • ERR_SQL_IMPALA_MEMORYLIMIT: Impala memory limit exceeded
      • ERR_SQL_POSTGRESQL_TOOMANYSESSIONS: too many sessions open concurrently
      • ERR_SQL_TABLE_NOT_FOUND: SQL Table not found
      • ERR_SQL_VERTICA_TOOMANYROS: Error in Vertica: too many ROS
      • ERR_SQL_VERTICA_TOOMANYSESSIONS: Error in Vertica: too many sessions open concurrently
      • ERR_SYNAPSE_CSV_DELIMITER: Bad delimiter setup
      • ERR_TRANSACTION_FAILED_ENOSPC: Out of disk space
      • ERR_TRANSACTION_GIT_COMMMIT_FAILED: Failed committing changes
      • ERR_USER_ACTION_FORBIDDEN_BY_PROFILE: Your user profile does not allow you to perform this action
      • INFO_RECIPE_POTENTIAL_FAST_PATH: Potential fast path configuration
      • INFO_RECIPE_IMPALA_POTENTIAL_FAST_PATH: Potential Impala fast path configuration
      • WARN_ACTIVITY_WAITING_K8S_CONTAINERSTARTING_CLOUD: Execution container is initializing
      • WARN_ACTIVITY_WAITING_K8S_POD_PENDING_CLOUD: Container will start soon
      • WARN_ACTIVITY_WAITING_K8S_QUOTA_EXCEEDED_CLOUD: You have exceeded your RAM and CPU quotas
      • WARN_ACTIVITY_WAITING_QUEUED_CLOUD: Your activity is queued
      • WARN_CLUSTERS_NONE_SELECTED_GLOBAL: No default cluster selected
      • WARN_CLUSTERS_NONE_SELECTED_PROJECT: No cluster selected in project
      • WARN_CONNECTION_HDFS_ACL_SUBDIRECTORY: subdirectory ACL synchronization mode
      • WARN_CONNECTION_NO_HADOOP_INTERFACE: no Hadoop interface set
      • WARN_CONNECTION_DATABRICKS_NO_AUTOFASTWRITE: automatic fast-write disabled
      • WARN_CONNECTION_SNOWFLAKE_NO_AUTOFASTWRITE: automatic fast-write disabled
      • WARN_CONNECTION_SPARK_NO_GROUP_WITH_DETAILS_READ_ACCESS: no groups allowed to read connection details
      • WARN_FOLDER_CONNECTION_TYPE_ERROR: Invalid connection linked to a managed folder
      • WARN_JOBS_MAX_OVER_MAX_ACTIVITIES: Jobs - Max jobs is over max activities
      • WARN_JOBS_MAX_TOO_HIGH: Jobs - Max value too high
      • WARN_JOBS_NO_LIMIT: Jobs - No limits set
      • WARN_JVM_CONFIG_XMX_IN_RED_ZONE: Sub optimal Xmx value
      • WARN_JVM_CONFIG_KERNEL_XMX_OVER_THRESHOLD: Xmx value for kernel over threshold
      • WARN_MISC_AUDIT_NO_LOG4J_LOCAL_TARGET: No Log4j local target
      • WARN_MISC_CODE_ENV_BUILTIN_MODIFIED: Built-in code env modified
      • WARN_MISC_CODE_ENV_DEPRECATED_INTERPRETER: Deprecated Python interpreter
      • WARN_MISC_CODE_ENV_USE_PYSPARK: pyspark installed in a code environment
      • WARN_MISC_DISK_MOUNT_TYPE: non recommended filesystem type
        • Remediation
      • WARN_MISC_DISK_NOEXEC_FLAG: noexec flag
      • WARN_MISC_DISK_ROTATIONAL: Rotational hard drives
      • WARN_MISC_ENVVAR_SPECIAL_CHAR: Environment variables with special characters
      • WARN_MISC_EVENT_SERVER_NO_TARGET: No target
      • WARN_MISC_JDBC_JARS_CONFLICT: JDBC drivers - some JARs are prone to version conflicts
      • WARN_MISC_LARGE_INTERNAL_DB: internal runtime database is too large
      • WARN_PROJECT_LARGE_JOB_HISTORY: Projects - Too old or too many job logs
      • WARN_PROJECT_LARGE_SCENARIO_HISTORY: Projects - Too old or too many scenario run logs
      • WARN_PROJECT_LARGE_STREAMING_HISTORY: Projects - Too old or too many continuous activities logs
      • WARN_RECIPE_SPARK_INDIRECT_HDFS: No direct access to read/write HDFS dataset
      • WARN_RECIPE_SPARK_INDIRECT_S3: No direct access to read/write S3 dataset
      • WARN_SPARK_NON_DISTRIBUTED_READ: Input dataset is read in a non-distributed way
      • WARN_SPARK_NON_DISTRIBUTED_WRITE: Output dataset is written in a non-distributed way
      • WARN_SPARK_UDFS_MAY_BE_BROKEN: Python UDFs may fail
      • WARN_SPARK_TASK_OOM: Some Spark tasks encountered out of memory
      • WARN_SPARK_TASK_DISKFULL: Some Spark tasks encountered disk space issues
      • WARN_SPARK_K8S_KILLED_EXECUTORS: Some Kubernetes executors were killed
      • WARN_SPARK_MISSING_DRIVER_TO_EXECUTOR_CONNECTIVITY: The Spark driver cannot call into the executors
      • WARN_SPARK_WITH_DATABRICKS_DATASET: Not leveraging Databricks compute
      • WARN_SECURITY_NO_CGROUPS: cgroups for resource control are not enabled
      • WARN_SECURITY_UIF_NOT_ENABLED: User Isolation Framework is not enabled
      • Undocumented error
  • Release notes
  • Other Documentation
  • Third-party acknowledgements
Dataiku DSS
You are viewing the documentation for version 12 of DSS.
  • »
  • Troubleshooting »
  • Error codes »
  • WARN_MISC_DISK_MOUNT_TYPE: non recommended filesystem type Open page in a new tab

WARN_MISC_DISK_MOUNT_TYPE: non recommended filesystem type¶

The filesystem type is not recommended. We strongly recommend using XFS or ext4.

Remediation¶

Please refer to Requirements for more details.

Next Previous

© Copyright 2024, Dataiku

Built with Sphinx using a theme provided by Read the Docs.