Dataiku Documentation
  • Academy
    • Join the Academy
      Benefit from guided learning opportunities →
      • Quick Starts
      • Learning Paths
      • New Features
      • Certifications
      • Academy Discussions
  • Community
      • Explore the Community
        Discover, share, and contribute →
      • Learn About Us
      • Ask A Question
      • What's New?
      • Discuss Dataiku
      • Using Dataiku
      • Setup And Configuration
      • General Discussion
      • Plugins & Extending Dataiku
      • Product Ideas
      • Programs
      • Frontrunner Awards
      • Dataiku Neurons
      • Community Resources
      • Community Feedback
      • User Research

      Discover the winners and finalists of the 2023 edition, and read their story to learn about their pioneering achievements in data science and AI!

      View Winners and Finalists

  • Documentation
    • Reference Documentation
      Comprehensive specifications of Dataiku →
      • User's Guide
      • Specific Data Processing
      • Automation & Deployment
      • APIs
      • Installation & Administration
      • Other Topics
  • Knowledge
    • Knowledge Base
      Articles and tutorials on Dataiku features →
      • User Guide
      • Admin Guide
      • Dataiku Solutions
      • Dataiku Cloud
  • Developer
    • Developer Guide
      Tutorials and articles for developers and coder users →
      • Getting Started
      • Concepts and Examples
      • Tutorials
      • API Reference
  • User's Guide
  • DSS concepts
  • Connecting to data
  • Exploring your data
  • Schemas, storage types and meanings
  • Data preparation
  • Charts
  • Interactive statistics
  • Machine learning
  • The Flow
  • Visual recipes
  • Recipes based on code
  • Code notebooks
  • MLOps
  • Webapps
  • Code Studios
  • Code reports
  • Dashboards
  • Workspaces
  • Data Catalog
  • Dataiku Applications
  • Working with partitions
  • DSS and SQL
  • DSS and Python
  • DSS and R
  • DSS and Spark
  • Code environments
  • Collaboration
  • Specific Data Processing
  • Time Series
  • Geographic data
  • Generative AI and LLM Mesh
    • Introduction
    • LLM connections
    • Running HuggingFace models
    • The Prompt Studio
    • Retrieval-Augmented Generation
    • PII detection
    • AI Code Assistant
    • DSS’s Model cache
  • Text & Natural Language Processing
  • Images
  • Audio
  • Video
  • Automation & Deployment
  • Metrics, checks and Data Quality
  • Automation scenarios
  • Production deployments and bundles
  • API Node & API Deployer: Real-time APIs
  • Governance
  • APIs
  • Python APIs
  • R API
  • Public REST API
  • Additional APIs
  • Installation & Administration
  • Installing and setting up
  • Elastic AI computation
  • DSS in the cloud
  • DSS and Hadoop
  • Metastore catalog
  • Operating DSS
  • Security
  • User Isolation
  • Other topics
  • Plugins
  • Streaming data
  • Formula language
  • Custom variables expansion
  • Sampling methods
  • Accessibility
  • Troubleshooting
  • Release notes
  • Other Documentation
  • Third-party acknowledgements
Dataiku DSS
You are viewing the documentation for version 12 of DSS.
  • »
  • Generative AI and LLM Mesh Open page in a new tab

Generative AI and LLM Mesh¶

  • Introduction
  • LLM connections
    • Hosted LLM APIs
    • Locally-running HuggingFace models
  • Running HuggingFace models
    • Cautions
    • Pre-requisites
  • The Prompt Studio
  • Retrieval-Augmented Generation
    • Concepts
    • Initial setup
    • Embedding LLMs
    • Your first RAG setup
    • Vector store types
  • PII detection
    • Setup
    • Detected PII types
    • Details
  • AI Code Assistant
    • Enabling AI Code Assistant
    • Using AI Code Assistant in Jupyter notebooks
    • Using AI Code Assistant in Visual Studio Code
  • DSS’s Model cache
    • The model cache
    • Import and export models
    • Build your own model archive to import
Next Previous

© Copyright 2024, Dataiku

Built with Sphinx using a theme provided by Read the Docs.