Dataiku Documentation
  • Academy
    • Join the Academy
      Benefit from guided learning opportunities →
      • Quick Starts
      • Learning Paths
      • New Features
      • Certifications
      • Academy Discussions
  • Community
      • Explore the Community
        Discover, share, and contribute →
      • Learn About Us
      • Ask A Question
      • What's New?
      • Discuss Dataiku
      • Using Dataiku
      • Setup And Configuration
      • General Discussion
      • Plugins & Extending Dataiku
      • Product Ideas
      • Programs
      • Frontrunner Awards
      • Dataiku Neurons
      • Community Resources
      • Community Feedback
      • User Research

      Discover the winners and finalists of the 2023 edition, and read their story to learn about their pioneering achievements in data science and AI!

      View Winners and Finalists

  • Documentation
    • Reference Documentation
      Comprehensive specifications of Dataiku →
      • User's Guide
      • Specific Data Processing
      • Automation & Deployment
      • APIs
      • Installation & Administration
      • Other Topics
  • Knowledge
    • Knowledge Base
      Articles and tutorials on Dataiku features →
      • User Guide
      • Admin Guide
      • Dataiku Solutions
      • Dataiku Cloud
  • Developer
    • Developer Guide
      Tutorials and articles for developers and coder users →
      • Getting Started
      • Concepts and Examples
      • Tutorials
      • API Reference
  • User's Guide
  • DSS concepts
  • Connecting to data
  • Exploring your data
  • Schemas, storage types and meanings
  • Data preparation
  • Charts
  • Interactive statistics
  • Machine learning
    • Prediction (Supervised ML)
    • Clustering (Unsupervised ML)
    • Automated machine learning
    • Model Settings Reusability
    • Features handling
    • Algorithms reference
    • Advanced models optimization
    • Models ensembling
    • Model Document Generator
    • Time Series Forecasting
    • Causal Prediction
    • Deep Learning
    • Models lifecycle
    • Scoring engines
    • Writing custom models
    • Exporting models
    • Partitioned Models
    • ML Diagnostics
    • Computer vision
      • Introduction
      • Computer vision analysis inputs
      • Your first Computer vision model
      • Model architectures & training parameters
      • Evaluation Metrics
      • Data augmentation
      • GPU support
      • Performance assessment
      • Endpoint APIs
    • Labeling
  • The Flow
  • Visual recipes
  • Recipes based on code
  • Code notebooks
  • MLOps
  • Webapps
  • Code Studios
  • Code reports
  • Dashboards
  • Workspaces
  • Data Catalog
  • Dataiku Applications
  • Working with partitions
  • DSS and SQL
  • DSS and Python
  • DSS and R
  • DSS and Spark
  • Code environments
  • Collaboration
  • Specific Data Processing
  • Time Series
  • Geographic data
  • Generative AI and LLM Mesh
  • Text & Natural Language Processing
  • Images
  • Audio
  • Video
  • Automation & Deployment
  • Metrics, checks and Data Quality
  • Automation scenarios
  • Production deployments and bundles
  • API Node & API Deployer: Real-time APIs
  • Governance
  • APIs
  • Python APIs
  • R API
  • Public REST API
  • Additional APIs
  • Installation & Administration
  • Installing and setting up
  • Elastic AI computation
  • DSS in the cloud
  • DSS and Hadoop
  • Metastore catalog
  • Operating DSS
  • Security
  • User Isolation
  • Other topics
  • Plugins
  • Streaming data
  • Formula language
  • Custom variables expansion
  • Sampling methods
  • Accessibility
  • Troubleshooting
  • Release notes
  • Other Documentation
  • Third-party acknowledgements
Dataiku DSS
You are viewing the documentation for version 12 of DSS.
  • »
  • Machine learning »
  • Computer vision Open page in a new tab

Computer vision¶

  • Introduction
  • Computer vision analysis inputs
    • Target column format for Object detection
    • Target column format for Image classification
    • Image path column
    • Supported images formats
  • Your first Computer vision model
    • Install the required packages
    • Create the analysis
    • Review the design of your model (optional)
    • Monitor the performance of your model during training
  • Model architectures & training parameters
    • Pre-trained models available
    • Training parameters
  • Evaluation Metrics
  • Data augmentation
    • Data augmentations settings
    • N.b. Object detection
  • GPU support
    • Selection of GPU
    • Using multi-GPU training
    • Requirements
  • Performance assessment
    • Object detection
      • Confusion matrix and image feed
      • Metrics
      • Precision-Recall curve
      • What if : Scoring new images on the go
    • Image classification
      • Confusion matrix and image feed
      • Metrics
      • Calibration curve, ROC curve & density charts
      • What if : Scoring new images on the go
  • Endpoint APIs
    • Input format
Next Previous

© Copyright 2024, Dataiku

Built with Sphinx using a theme provided by Read the Docs.