DSS 4.3 Release notes¶
Migration notes¶
Migration paths to DSS 4.3¶
From DSS 4.2: Automatic migration is supported, with the restrictions and warnings described in Limitations and warnings
From DSS 4.1: In addition to the restrictions and warnings described in Limitations and warnings, you need to pay attention to the restrictions and warnings applying to your previous versions. See 4.0 -> 4.1 and 4.1 -> 4.2
From DSS 4.0: In addition to the restrictions and warnings described in Limitations and warnings, you need to pay attention to the restrictions and warnings applying to your previous versions. See 4.0 -> 4.1 and 4.1 -> 4.2
From DSS 3.1: In addition to the restrictions and warnings described in Limitations and warnings, you need to pay attention to the restrictions and warnings applying to your previous versions. See 3.1 -> 4.0 and 4.0 -> 4.1 and 4.1 -> 4.2
From DSS 3.0: In addition to the restrictions and warnings described in Limitations and warnings, you need to pay attention to the restrictions and warnings applying your previous versions. See 3.0 -> 3.1, 3.1 -> 4.0 and 4.0 -> 4.1 and 4.1 -> 4.2
From DSS 2.X: In addition to the restrictions and warnings described in Limitations and warnings, you need to pay attention to the restrictions and warnings applying to your previous versions: see 2.0 -> 2.1 2.1 -> 2.2 2.2 -> 2.3, 2.3 -> 3.0, 3.0 -> 3.1, 3.1 -> 4.0 and 4.0 -> 4.1 and 4.1 -> 4.2
Migration from DSS 1.X is not supported. You must first upgrade to 2.0. See DSS 2.0 Relase notes
Deprecation notice¶
DSS 4.3 deprecates support for some OS and Hadoop distributions. Support for these will be removed in a later release.
Support for the following OS versions are deprecated and will be removed in a later release:
Redhat/Centos/Oracle Linux 6 versions strictly below 6.8
Redhat/Centos/Oracle Linux 7 versions strictly below 7.3
Ubuntu 14.04
Debian 7
Support for the following Java versions is deprecated and will be removed in a later release:
Java 7
Support for the following R versions is deprecated and will be removed in a later release:
R versions strictly below 3.4
Support for the following Hadoop distribution versions are deprecated and will be removed in a later release:
Cloudera distribution for Hadoop versions strictly below 5.9
HDP versions strictly below 2.5
EMR versions strictly below 5.7
How to upgrade¶
It is strongly recommended that you perform a full backup of your DSS data directory prior to starting the upgrade procedure.
For automatic upgrade information, see Upgrading a DSS instance.
Pay attention to the warnings described in Limitations and warnings.
Limitations and warnings¶
Automatic migration from previous versions is supported, but there are a few points that need manual attention.
Retrain of machine-learning models¶
Models trained with prior versions of DSS should be retrained when upgrading to 4.3 (usual limitations on retraining models and regenerating API node packages - see Upgrading a DSS instance). This includes models deployed to the flow (re-run the training recipe), models in analysis (retrain them before deploying) and API package models (retrain the flow saved model and build a new package)
After installation of the new version, R setup must be replayed
Version 4.3.4 - August 13th, 2018¶
DSS 4.3.4 is a bugfix release
Recipes¶
Sync: Fixed Azure Blob Storage to Azure Data Warehouse fast path if ‘container’ field is empty in Blob storage connection
Sync: Fixed Redshift-to-S3 fast path with non equals partitioning dependencies.
RMarkdown¶
Fixed truncated display in RMarkdown reports view
Fixed ‘Create RMarkdown export step’ scenario step when the view format is the same that the download format
Fixed RMarkdown attachments in scenario mails that could send stale versions of reports
Multi-user-security: add ability for regular users (i.e. without “Write unsafe code”) to write RMarkdown reports
Multi-user-security: Fixed RMarkdown reports snapshots
Fixed ‘New snapshot’ button on RMarkdown insight
Version 4.3.3 - July 18th, 2018¶
DSS 4.3.3 is a bugfix release
Machine learning¶
Fixed error when using feature selection by correlation to target together with classification problems and categorical variables with missing values imputation
Recipes¶
Suggest joins with the first dataset in join recipes
Fixed display of Pig recipes validation errors
Fixed support of Pig recipes with multiple outputs
Version 4.3.2 - June 26th, 2018¶
DSS 4.3.2 is a bugfix release
Datasets¶
New feature: added ability to forbid uploads into the DSS data directory
New feature: added to set the default target connection for upload datasets
New feature: added ability to configure uploads prefix on HDFS
Fixed upload datasets on HDFS connections in Multi User Security mode.
Added support for MySQL driver >= 8
Machine Learning¶
Fixed possible disappearance of metrics on the model page.
Version 4.3.1 - June 11th, 2018¶
DSS 4.3.1 is a bugfix release.
Hadoop & Spark¶
Better error display for some Hive errors
Flow¶
Fixed wrongful project boundary crossing when building recursive cross-projects Flows
Fixed UI issue creating Jobs database dataset
Clusters¶
Make metrics computation use the proper cluster when running in a scenario-specific cluster
Added some protection against invalid values in the “default cluster” field
Machine Learning¶
Fixed link in “Train complete” notification
Fixed issues with migration from 4.1 of GBT models that were deployed in “no-reoptimize” mode
Fixed small UI issues
Version 4.3.0 - June 4th, 2018¶
DSS 4.3.0 is a major upgrade to DSS with significant new features. For a summary of the major new features, see: https://www.dataiku.com/learn/whatsnew
New features¶
API Deployer¶
The API Deployer empowers Data Scientists to self-manage model deployments and rollbacks, from dev to production, on premises or in the cloud.
The API Deployer is the centralized UI through which you can:
Manage your fleet of API nodes
Deploy new API services to your API nodes
Monitor the health and status of your API nodes
Manage the lifecycle of your APIs from development to production.
The API Deployer can control an arbitray number of API nodes, and can dynamically deploy new API Nodes as containers through the use of Kubernetes (which allows you to deploy either on-premises, or on a serverless stack on the cloud).
Please see API Node & API Deployer: Real-time APIs for more information.
Dynamic EMR clusters¶
This feature is based on the “multiple Hadoop clusters” feature, and is provided by an experimental plugin.
Through the use of this plugin, DSS can now create, destroy, and scale up and down EMR clusters. It is possible to assign different EMR clusters to various projects, and you can also build setups where you create volatile EMR clusters for running a scenario for full elastic usage approaches.
Please see Dynamic AWS EMR clusters for more information.
Reorder columns in data preparation¶
As part of a “Prepare” recipe, you can now reorder column by dragging and dropping them. Columns reordering can also be performed in bulk and in the “columns” view of the Prepare recipe.
Fast load from Azure Blob Storage to Azure Datawarehouse¶
DSS now has an optimized engine for the “Sync” recipe to load data in Azure Datawarehouse from Azure Blob Storage.
Fast unload from Redshift to S3¶
DSS now has an optimized engine for the “Sync” recipe to unload data from Amazon Redshift to Amazon S3.
Macro roles¶
The “Macros” system that allows you to use and define custom actions in a plugin has been enhanced and can now display contextual actions. For example a “import schema” macro can now be displayed in the “Actions” menu of the dataset.
Support for multiple Hadoop clusters¶
A single DSS instance can now connect to multiple Hadoop clusters and submit jobs to them.
Please see Multiple Hadoop clusters for more information.
Other notable enhancements¶
Keep zoom and position in Flow¶
The Flow view now remembers your position and zoom level when going back to the Flow for easier navigation in large flows.
Fast scoring for XGBoost models¶
XGBoost models are now using DSS optimized scoring engine. The effect is especially important for the API node, where using a XGBoost model can now be dozens of times faster.
More options for XGBoost models¶
The booster type, objective function, and tree building methods are now customizable. Booster and objective function can be grid-searched.
API endpoints calling other API endpoints¶
A common use-case is to have an API Service with several endpoints (for example several prediction models), and to have an additional “dispatcher” code endpoint that orchestrates the other endpoints.
Users only directly query the dispatcher endpoint, and this dispatcher endpoint in turns needs to query the other endpoints of the same API Service.
DSS now has new Python APIs to facilitate this kind of use cases. Please see Endpoint APIs for more information.
Enhanced support for large number of plugins¶
The “New dataset” and “New recipe” menu have been overhauled to better display on instances with a very large number of plugins installed.
Performance¶
Large Flows will now display faster
Data exports can now run in external processes so as not to put load on the main DSS backend server.
Notable bug fixes¶
Machine learning¶
Fixed failures when using a date column as a categorical feature
Fixed failures scoring models on Spark with boolean columns