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This document explains, at a high level, the algorithms used to:

• Generate counterfactual explanations
• Perform outcome optimization
• Evaluate a sample’s plausibility

Counterfactual explanations
For each feature that has been made actionable, a handler is attached to it. Handlers generate
meaningful random values for this feature in a given radius (they also define a distance metric)
around the reference point. Handlers know the train set and generate values that respect the
distribution of the features in the train set.

The algorithm is then:

1. Define two small concentric hyperspheres centered on the reference point, one with a
minimum radius, the other with a maximum radius.

2. Generate some points between these two hyperspheres using the handlers.
3. Increase the radii of the hyperspheres and repeat step 2 until some counterfactual explana-

tions are found (i.e. points for which the prediction differs from the reference’s).
4. Once some counterfactual explanations are found for a given min radius and max radius,

generate more valid counterfactual explanations using the handlers between these two
radii.

5. At this point of the algorithm, some counterfactual explanations were found. The next
phase is trying to improve them by resetting as many features as possible to the original
while keeping the counterfactual nature in order to bring them closer to the reference.

6. Once counterfactual explanations have been improved, if too many were
found, they are selected by performing a KMeans clustering with
k=number_of_desired_counterfactual_explanations and returning one counterfactual ex-
planation from each of the clusters to ensure diversity.

Counterfactual explanations don’t usually belong to the train dataset, as they were generated
randomly around the reference point.

This algorithm is a trade-off between:
• closeness to the reference
• plausibility of the generated points
• diversity of results
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Outcome optimization
Principle
For each feature that has been made actionable, a handler is attached to it. Handlers generate
meaningful random values for this feature. Handlers know the train set and generate values
that respect the distribution of the feature in the train set.

Handlers are used by a genetic algorithm to generate new candidate populations.

A lineage mechanism is introduced to search several distinct local optima, and to ensure that
the final optimized population is diverse:

• Each sample belongs to a certain lineage.
• When a new sample is generated by a perturbation of another sample, both samples

belong to the same lineage.
• When a new sample is generated ex-nihilo, it starts a new lineage.

The lineage is taken into account during the selection step of the genetic algorithm:
• If a new optimum has been found for a given lineage, the next generation will contain

some of this lineage’s samples, even if there are better samples in other lineages.
• If a lineage failed to improve, it might have reached a local optimum, so all corresponding

samples are removed from the population.

When a lineage goes extinct, its best representative is probably a local optimum, so it’s saved
in a cache.

Aer a given number of iterations, the cache contains the values that must be returned
by the algorithm. If it contains too many values, a KMeans clustering is performed with
k=number_of_desired_samples and each cluster’s best representative is returned to ensure
diversity.

Pseudocode
population = init_population_with_random_samples_from_dataset()
pantheon = []
for 0..n_iterations
   population = concat(
      population,
      generate_values_with_perturbations_of_existing_population(population),
      generate_random_uniform_values()
   )
   population, best_samples_from_newly_extinct_lineages = select(population)
   pantheon = concat(pantheon, best_samples_from_newly_extinct_lineages)
clusters = kmeans_clustering(pantheon)
return get_best_individual_from_each_cluster(clusters)
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Plausibility
Using a RandomTreesEmbedding, computing correlations between some points and the points of
the train set gives an indication of how plausible the points are.

Since this “correlation score” is not very interpretable, it’s transformed into a value between
0% and 100% that’s easier to understand using the following method:

1. The RandomTreesEmbedding is used on the points of the train set to find their “correlation
score”. It gives baselines.

2. The quantiles of these values are computed.
3. The “correlation scores” of the counterfactual explanations are compared to the quantiles to

find how plausible they are compared to the points of the train set.

E.g. if a counterfactual explanation has a plausibility of 25%, it means that 25% of the points
from the train set are more likely to be outliers (have a worse “correlation score”).
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